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Abstract— Dropout has been proven to be an effective algo-
rithm for training robust deep networks because of its ability
to prevent overfitting by avoiding the co-adaptation of feature
detectors. Current explanations of dropout include bagging, naive
Bayes, regularization, and sex in evolution. According to the
activation patterns of neurons in the human brain, when faced
with different situations, the firing rates of neurons are random
and continuous, not binary as current dropout does. Inspired
by this phenomenon, we extend the traditional binary dropout
to continuous dropout. On the one hand, continuous dropout is
considerably closer to the activation characteristics of neurons
in the human brain than traditional binary dropout. On the
other hand, we demonstrate that continuous dropout has the
property of avoiding the co-adaptation of feature detectors, which
suggests that we can extract more independent feature detectors
for model averaging in the test stage. We introduce the proposed
continuous dropout to a feedforward neural network and compre-
hensively compare it with binary dropout, adaptive dropout, and
DropConnect on Modified National Institute of Standards and
Technology, Canadian Institute for Advanced Research-10, Street
View House Numbers, NORB, and ImageNet large scale visual
recognition competition-12. Thorough experiments demonstrate
that our method performs better in preventing the co-adaptation
of feature detectors and improves test performance.

Index Terms— Co-adaptation, deep learning, dropout, overfit-
ting, regularization.

I. INTRODUCTION

DROPOUT is an efficient algorithm introduced by
Hinton et al. [1] for training robust neural networks and

has been applied to many vision tasks [2]–[4]. During the train-
ing stage, hidden units of the neural networks are randomly
omitted at a rate of 50% [1], [5]. Thus, the presentation of

Manuscript received March 29, 2016; revised January 13, 2017 and
May 31, 2017; accepted August 31, 2017. This work was sup-
ported in part by the 973 Project under Grant 2015CB351803, in part
by the National Key Research and Development Program of China
under Grant 2017YFB1002203, in part by NSFC under Grant 61572451,
Grant 61390514, and Grant 61632019, in part by Youth Innovation Pro-
motion Association CAS under Grant CX2100060016, in part by Fok
Ying Tung Education Foundation under Grant WF2100060004, and in part
by the Australian Research Council Projects under Grant FL-170100117,
Grant DP-140102164, and Grant LP-150100671. (Corresponding author:
Xinmei Tian.)

X. Shen and X. Tian are with the CAS Key Laboratory of Technology
in Geo-Spatial Information Processing and Application Systems, Univer-
sity of Science and Technology of China, Hefei 230027, China (e-mail:
shenxu@mail.ustc.edu.cn; xinmei@ustc.edu.cn).

T. Liu and D. Tao are with the UBTech Sydney Artificial Intelligence
Institute, School of Information Technologies, Faculty of Engineering and
Information Technologies, The University of Sydney, Sydney, NSW 2008,
Australia (e-mail: tongliang.liu@uts.edu.au; dacheng.tao@uts.edu.au).

F. Xu is with the CAS Key Laboratory of Brain Function and Disease,
School of Life Sciences, University of Science and Technology of China,
Hefei 230027, China (e-mail: xufan@mail.ustc.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2017.2750679

each training sample can be viewed as providing updates of
parameters for a randomly chosen subnetwork. The weights of
this subnetwork are trained by backpropagation [6]. Weights
are shared for the hidden units that are present among dif-
ferent subnetworks at each iteration. During the test stage,
predictions are made by the entire network, which contains
all the hidden units with their weights halved.

The motivation and intuition behind dropout is to pre-
vent overfitting by avoiding co-adaptations of the feature
detectors [1]. Deep network can achieve better representation
than shallow networks, but overfitting is a serious problem
when training a large feedforward neural network on a small
training set [1], [7]. Randomly dropping the units from the
neural network can greatly reduce this overfitting problem.
Encouraged by the success of dropout, several related works
have been presented, including fast dropout [8], adaptive
dropout [9], and DropConnect [10]. To accelerate dropout
training, Wang and Manning [8] suggested sampling the output
from an approximated distribution rather than sampling binary
mask variables for the inputs. Ba and Frey [9] proposed
adaptively learning the dropout probability p from the inputs
and weights of the network. Wan et al. [10] generalized
dropout by randomly dropping the weights rather than the
units.

To interpret the success of dropout, several explana-
tions from both theoretical and biological perspectives have
been proposed. Based on theoretical explanations, dropout
is viewed as an extreme form of bagging [1], as a gen-
eralization of naive Bayes [1], or as adaptive regulariza-
tion [11], [12], which is proven to be a very useful approach
for neural network training [13]. From the biological per-
spective, Hinton et al. [1] explain that there is an intriguing
similarity between dropout and the theory of the role of sex
in evolution. However, no understanding from the perspective
of the brain’s neural network—the origin of deep neural
networks—has been proposed. In fact, by analyzing the firing
patterns of neural networks in the human brain [14]–[16], we
find that there is a strong analogy between dropout and the
firing pattern of brain neurons. That is, a small minority of
strong synapses and neurons provide a substantial portion
of the activity in all brain states and situations [14]. This
phenomenon explains why we need to randomly delete hid-
den units from the network and train different subnetworks
for different samples (situations). However, the remainder of
the brain is not silent. The remaining neuronal activity in
any given time window is supplied by very large numbers
of weak synapses and cells. The amplitudes of oscillations
of neurons obey a random continuous pattern [15], [16].
In other words, the division between “strong” and “weak”
neurons is not absolute. They obey a continuous—rather than
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bimodal—distribution [15]. Consequently, we should assign
a continuous random mask to each neuron in the dropout
network for the divisions of “strong” and “weak” rather than
use a binary mask to choose “activated” and “silent” neurons.

Inspired by this phenomenon, we propose a continuous
dropout algorithm in this paper, i.e., the dropout variables are
subject to a continuous distribution rather than the discrete
(Bernoulli) distribution in [1]. Specifically, in our continuous
dropout, the units in the network are randomly multiplied
by continuous dropout masks sampled from μ ∼ U(0, 1) or
g ∼ N (0.5, σ 2), termed uniform dropout or Gaussian dropout,
respectively. Although multiplicative Gaussian noise has been
mentioned in [17], no theoretical analysis or generalized con-
tinuous dropout form is presented. We investigate two specific
continuous distributions, i.e., uniform and Gaussian, which are
commonly used and are also similar to the process of neu-
ron activation in the brain. We conduct extensive theoretical
analyses, including both static and dynamic property analyses
of our continuous dropout, and demonstrate that continuous
dropout prevents the co-adaptation of feature detectors in
deep neural networks. In the static analysis, we find that
continuous dropout achieves a good balance between the
diversity and independence of subnetworks. In the dynamic
analysis, we find that continuous dropout training is equivalent
to a regularization of covariance between weights, inputs, and
hidden units, which successfully prevents the co-adaptation of
feature detectors in deep neural networks.

We evaluate our continuous dropout through extensive
experiments on several data sets, including Modified National
Institute of Standards and Technology (MNIST), Cana-
dian Institute for Advanced Research-10 (CIFAR-10), Street
View House Numbers (SVHN), NORB, and Imagenet Large
Scale Visual Recognition Competition-12 (ILSVRC-12). We
compare it with Bernoulli dropout, adaptive dropout, and
DropConnect. The experimental results demonstrate that our
continuous dropout performs better in preventing the co-
adaptation of feature detectors and improves test performance.

II. CONTINUOUS DROPOUT

Hinton et al. [1] interpret dropout from the biological
perspective, i.e., it has an intriguing similarity to the theory of
the role of sex in evolution [18]. Sexual reproduction involves
taking half the genes of each parent and combining them
to produce offspring. This corresponds to the result where
dropout training works the best when p = 0.5; more extreme
probabilities produce worse results [1]. The criteria for natural
selection may not be individual fitness but rather the mixability
of genes to combine [1]. The ability of genes to work well with
another random set of genes makes them more robust. The
mixability theory described in [19] is that sex breaks up sets
of co-adapted genes, and this means that achieving a function
using a large set of co-adapted genes is not nearly as robust
as achieving the same function, perhaps less than optimally,
in multiple alternative ways, each of which only uses a small
number of co-adapted genes.

Following this train of thought, we can infer that randomly
dropping units tends to produce more multiple alternative
networks, which is able to achieve better performance.

For example, when we use one hidden layer with n units
for dropout training, i.e., the value of the dropout variable
is randomly set to 0 or 1, 2n alternative networks will be
produced during training and will make up the entire network
for testing. From this perspective, it is more reasonable to take
the continuous dropout distribution into account because, for
continuous dropout variables, a hidden layer with n units can
produce an infinite number of multiple alternative networks,
which are expected to work better than the Bernoulli dropout
proposed in [1]. The experimental results in Section IV demon-
strate the superiority of continuous dropout over Bernoulli
dropout.

III. CO-ADAPTATION REGULARIZATION

IN CONTINUOUS DROPOUT

In this section, we derive the static and dynamic properties
of our continuous dropout. Static properties refer to the
properties of the network with a fixed set of weights, that is,
given an input, how dropout affects the output of the network.
Dynamic properties refer to the properties of updating of
the weights for the network, i.e., how continuous dropout
changes the learning process of the network [12]. Because
Bernoulli dropout with p = 0.5 achieves the best performance
in most situations [1], [20], we set p = 0.5 for Bernoulli
dropout. For our continuous dropout, we apply μ∼U(0, 1)
and g∼N (0.5, σ 2) for uniform dropout and Gaussian dropout
to ensure that all three dropout algorithms have the same
expected output (0.5).

A. Static Properties of Continuous Dropout

In this section, we focus on the static properties of con-
tinuous dropout, i.e., properties of dropout for a fixed set of
weights. We start from the single layer of linear units, and
then we extend it to multiple layers of linear and nonlinear
units.

1) Continuous Dropout for a Single Layer of Linear
Units: We consider a single fully connected (FC) linear
layer with input I = [I1, I2, . . . , In]T , weighting matrix
W = [wi j ]k×n , and output S = [S1, S2, . . . , Sk]T .
The i th output Si = ∑n

j=1 wi j I j . In Bernoulli dropout, each
input unit I j is kept with probability p∼Bernoulli(0.5). The
i th output and its expectation are

SB
i =

n∑

j=1

wi j I j p j and E
[
SB

i

] = 1

2

n∑

j=1

wi j I j .

In our uniform dropout, I j is kept with probability
u ∼ U(0, 1). The output becomes

SU
i =

n∑

j=1

wi j I j u j and E
[
SU

i

] = 1

2

n∑

j=1

wi j I j .

When Gaussian dropout is applied, I j is kept with probability
g ∼ N (0.5, σ 2)

SG
i =

n∑

j=1

wi j I j g j and E
[
SG

i

] = 1

2

n∑

j=1

wi j I j .

Therefore, the three dropout methods achieve the same
expected output.
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Because dropout is applied to the input units independently,
the variance and covariance of the output units are

Var
(
SU

i

) =
n∑

j=1

w2
i j I 2

j Var(u j ) =
n∑

j=1

w2
i j I 2

j
1

12

Cov
(
SU

i , SU
l

) =
n∑

j=1

wi j wl j I 2
j

1

12

Var
(
SG

i

) =
n∑

j=1

w2
i j I 2

j Var(gi) =
n∑

j=1

w2
i j I 2

j σ
2

Cov
(
SG

i , SG
l

) =
n∑

j=1

wi j wl j I 2
j σ

2

Var
(
SB

i

) =
n∑

j=1

w2
i j I 2

j p j q j =
n∑

j=1

w2
i j I 2

j
1

4

Cov
(
SB

i , SB
l

) =
n∑

j=1

wi j wl j I 2
j p j q j =

n∑

j=1

wi j wl j I 2
j

1

4
.

The aim of dropout is to avoid the co-adaptation of feature
detectors, reflected by the covariance between output units.
Generally, networks with lower covariance between feature
detectors tend to generate more independent subnetworks and
therefore tend to work better during the test stage. Comparing
the covariance of the output units of the three dropout algo-
rithms, we can see that uniform dropout has a lower covariance
than Bernoulli dropout. The covariance of Gaussian dropout
is controlled by the parameter σ 2. Through extensive experi-
ments, we find that Gaussian dropout with σ 2 ∈ [(1/5), (1/3)]
works the best among the three dropout algorithms. This phe-
nomenon implies that there is a balance between the diversity
of subnetworks (larger variance of the output of hidden units)
and their independence (lower covariance between units in the
same layer). Bernoulli dropout achieves the highest variance
but its covariance is also the highest. In contrast, uniform
dropout achieves the lowest covariance, but its variance is also
the lowest. Gaussian dropout with a suitable σ 2 achieves the
best balance between variance and covariance, ensuring a good
generalization capability.

2) Continuous Dropout Approximation for Nonlinear Unit:
For the nonlinear unit, we consider the case that the output of
a single unit with total linear input S is given by the logistic
sigmoidal function

O = sigmoid(S) = 1

1 + ce−λS
. (1)

For uniform dropout, S = ∑n
i=1 wi Ii ui , ui ∼ U(0, 1).

We have S = ∑n
i=1 Ui , Ui ∼ U(0, wi Ii ), E[Ui ] = (1/2)wi Ii ,

and Var(Ui ) = (1/12)w2
i I 2

i . Because Ui ≤ maxi (wi Ii ),
s2

n = ∑n
i=1 Var(Ui ) → ∞. According to Corollary 2.7.1 of

Lyapunov’s central limit theorem [18], S tends to a normal
distribution as n → ∞. It yields that

S ∼ N (
μU , σ 2

U

)

μU =
n∑

i=1

E[Ui ] =
n∑

i=1

1

2
wi Ii

σ 2
U =

n∑

i=1

Var(Ui ) =
n∑

i=1

1

12
w2

i I 2
i . (2)

For Gaussian dropout, S = ∑n
i=1 wi Ii gi , gi ∼ N (μ, σ 2)

and gi i.i.d. We can easily infer that S ∼ N (μS, σ 2
S ), where

μS = ∑n
i=1 wi Iiμ and σ 2

S = ∑n
i=1 w2

i I 2
i σ 2.

Thus, for both uniform dropout and Gaussian dropout, S is
subject to a normal distribution. In the following sections,
we derive only the statistical property of Gaussian dropout
because it is the same for uniform dropout.

The expected output is

E(O) = E[sigmoid(S)]
=

∫ ∞

−∞
sigmoid(x)N (

x |μS, σ
2
S

)
dx

≈ sigmoid

⎛

⎝ μS
√

1 + πσ 2
S /8

⎞

⎠ . (3)

This means that for Gaussian dropout gi ∼ N (μ, σ 2), we have
the recursion

E
[
Sh

i

] =
∑

l<h

∑

j

whl
i j E

[
gl

j

]
E

[
Ol

j

]

and

E
[
Oh

i

] ≈ sigmoid

(
E

[
Sh

i

]

1 + πVar
(
Sh

i

)/
8

)

(4)

while for Bernoulli dropout [12]

E
[
Sh

i

] =
∑

l<h

∑

j

whl
i j E

[
δl

j

]
E
[
Ol

j

]

E
[
Oh

i

] ≈ sigmoid
(
E
[
Sh

i

])
. (5)

In Bernoulli dropout, the expected output is only the prop-
agation of deterministic variables among the entire network,
whereas our continuous dropout has a regularization term of
(1 + πVar(Sh

i )/8)1/2 = (1 + π(
∑n

i=1 w2
i I 2

i σ 2)/8)1/2. Thus,
continuous dropout can regularize complex weights and inputs
during forward propagation.

B. Dynamic Properties of Continuous Dropout

In this section, we will investigate the dynamic properties
of continuous dropout related to the training procedure and
the update of the weights. We also start from the simple case
of a single linear unit, and then we discuss the nonlinear case.
As proven in the last section, in uniform dropout, the S tends
to a normal distribution as n → ∞. Therefore, we analyze the
dynamic properties of Gaussian dropout only.

1) Continuous Dropout Gradient and Adaptive
Regularization—Single Linear Unit: In the case of a
single linear unit trained with dropout with an input I , an
output O = S, and a target t , the error is typically quadratic
of the form ED = (1/2)(t − O)2, where O = S = ∑

i wi pi Ii .
In the linear case, the ensemble network is identical to the
deterministic network obtained by scaling the connections
using the dropout probabilities. For a single output O,
the ensemble error of all possible subnetworks EENS is
defined by

EENS = 1

2
(t − OENS)2 = 1

2

(

t −
n∑

i=1

μwi Ii

)2

.
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The gradients of the ensemble error can be computed by

∂ EENS

∂wi
= −(t − OENS)μIi . (6)

For Gaussian dropout, ED = (1/2)(t − ∑n
i=1 giwi Ii )

2.
Here, g∼N (μ, σ 2) is the random variable with a Gaussian
distribution. Hence, ED is a random variable, while EENS is
a deterministic function.

For dropout error, the learning gradients are of the form

∂ ED

∂wi
= ∂ ED

∂O

∂O

∂wi
= −(t − O)

∂O

∂wi

and therefore

∂ ED

∂wi
= −(t − OD)gi Ii

= −tgi Ii + wi g
2
i I 2

i +
∑

j �=i

w j gi g j Ii I j (7)

and

E
[
∂ ED

∂wi

]

= −tμIi + wi (μ
2 + σ 2)I 2

i +
∑

j �=i

w jμ
2 Ii I j

= ∂ EENS

∂wi
+ wi I 2

i σ 2. (8)

Remarkably, the relationship between the expectation of
ensemble error and dropout error is

ED = EENS + 1

2

n∑

i=1

w2
i I 2

i σ 2. (9)

In Bernoulli dropout [12], this relationship is

ED = EENS + 1

2

n∑

i=1

w2
i I 2

i Var(pi). (10)

Generally, the regularization term is weight decay based on the
square of the weights, and it ensures that the weights do not
become too large to overfit the training data. Bernoulli dropout
extends this regularization term by incorporating the square
of the input terms and the variance of the dropout variables;
however, both the expected output and the weight of regular-
ization term are determined by the dropout probability (p),
i.e., there is no freedom for adjusting the model complexity to
reduce overfitting. In contrast, in Gaussian dropout, we have an
extra degree of freedom of σ 2 to achieve the balance between
network output and model complexity.

2) Continuous Dropout Gradient and Adaptive
Regularization—Single Sigmoidal Unit: In Gaussian dropout,
for a single sigmoidal unit

O = sigmoid(S) = 1

1 + ce−λS

where S = ∑
i wi gi Ii and SENS = E[S] = ∑

i wiμIi with
σ 2

S = ∑
i w2

i I 2
i σ 2 and μS = ∑

i wiμIi . Commonly, we use
relative entropy error

ED = −(t logO + (1 − t)log(1 − O)). (11)

By the chain rule (∂ ED/∂wi ) = (∂ ED/∂O)(∂O/∂S)
(∂S/∂wi ), we obtain

∂ ED

∂wi
= −λ(t − O)

∂S

∂wi
.

For the ensemble network

∂ EENS

∂wi
= −λ(t − OENS)

∂SENS

∂wi
.

We have

OENS = E[sigmoid(S)]

=
∫ ∞

−∞
eS

1 + eS
e
− S−μ2

S
2σ2

S ds

≈ sigmoid

⎛

⎝ μS
√

1 + πσ 2
S /8

⎞

⎠ . (12)

Therefore

∂ EENS

∂wi
= −λ

⎛

⎝t − sigmoid

⎛

⎝ μS
√

1 + πσ 2
S /8

⎞

⎠

⎞

⎠μIi . (13)

For the dropout network

∂ ED

∂wi
= −λ(t − O)gi Ii

= −λ
(

t − sigmoid
(∑

j
w j g j I j

))
gi Ii . (14)

Here, gi are the random variables with Gaussian distributions;
thus, OD = sigmoid(

∑
j w j g j I j ) and gi are both random

variables. It yields that

E
[
∂ ED

∂wi

]

=E

⎡

⎣−λ

⎛

⎝t−sigmoid

⎛

⎝
∑

j

w j g j I j |g j =μ

⎞

⎠

⎞

⎠μIi

⎤

⎦

(15)

where O
′
D = sigmoid(

∑
j w j g j I j |g j = μ), E[O

′
D] = μ

′
S =

μS = ∑
i wiμIi , and Var(O

′
D) = ∑

j �=i w2
j I 2

j σ
2

E
[
O

′
D

] ≈ sigmoid

⎛

⎝
μ

′
S√

1 + πσ
′
S

2
/8

⎞

⎠ . (16)

The gradient of the dropout is

E
[
∂ ED

∂wi

]

≈ ∂ EENS

∂wi
+ λμIi

⎛

⎝sigmoid

⎛

⎝ μS
√

1 + πσ
′
S

/
8

⎞

⎠

− sigmoid

⎛

⎝ μS
√

1 + πσ 2
S

/
8

⎞

⎠

⎞

⎠

≈ ∂ EENS

∂wi
+ λμIi sigmoid

′
⎛

⎝ μS
√

1 + πσ 2
S

/
8

⎞

⎠

×
⎛

⎜
⎝

√
1 + πσ 2

S

/
8 −

√

1 + πσ
′
S

2/
8

√(
1 + πσ

′
S

2/
8
)(

1 + πσ 2
S

/
8
)

⎞

⎟
⎠



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHEN et al.: CONTINUOUS DROPOUT 5

Fig. 1. Samples of benchmark data sets. MNIST and SVHN are digit classification tasks. NORB, CIFAR-10, and ImageNet 2012 are object recognition
tasks. All of them are formulated as classification problems, which is commonly evaluated by classification accuracy (error).

≈ ∂ EENS

∂wi
+ λμIi sigmoid

′
⎛

⎝
μS

√
1 + πσ 2

S

/
8

⎞

⎠

×
⎛

⎝
π
16μSw2

i I 2
i σ 2

√(
1 + πσ

′
S

2/
8
)(

1 + πσ 2
S

/
8
)

⎞

⎠

≈ ∂ EENS

∂wi
+ λμIi sigmoid

′
⎛

⎝
μS

√
1 + πσ 2

S

/
8

⎞

⎠

×
(

π
16μSw2

i I 2
i σ 2

1 + πσ 2
S

/
8

)

= ∂ EENS

∂wi
+ λμIi sigmoid

′
⎛

⎝
μS

√
1 + πσ 2

S

/
8

⎞

⎠

×
(

π
16

(∑
j w jμI j

)(
w2

i I 2
i σ 2

)

1 + π
8

∑
i w2

i I 2
i σ 2

)

.

For approximation

ED

= EENS +
n∑

i=1

λwiμi Ii sigmoid
′
⎛

⎝ μS
√

1 + πσ 2
S

/
8

⎞

⎠

×
(

π
16

(∑
j w jμI j

)(
w2

i I 2
i σ 2

)

1 + π
8

∑
i w2

i I 2
i σ 2

)

= EENS + 1

2
λsigmoid

′
⎛

⎝ μS
√

1 + πσ 2
S

/
8

⎞

⎠

×
n∑

i=1

∑

j

wiw jμ
2 Ii I j

(π

8
w2

i I 2
i σ 2

)/
(

1+π

8

∑

i

w2
i I 2

i σ 2

)

.

(17)

Note that for Bernoulli dropout [12]

ED = EENS + 1

2
λsigmoid

′
(U)

n∑

i=1

w2
i I 2

i Var(pi). (18)

Bernoulli dropout provides only the magnitude of the regu-
larization term, which is adaptively scaled by the square of the
input terms, by the gain λ of the sigmoidal function, by the
variance of the dropout variables, and by the instantaneous
derivative of the sigmoidal function; however, this term tends
to achieve only a simpler model and avoid overfitting. It has
little help in avoiding the co-adaptation of units (feature
detectors) in the same layer. In contrast, continuous dropout
not only provides the regularization of squares of input units,
weights, and dropout variance individually (

∑
i w2

i I 2
i σ 2),

but also regularizes the covariance between input units (Ii I j )
and weights (wiw j ). In other words, in Gaussian dropout,
the regularization term penalizes the covariance between
weights, dropout variables, and input units; that is, it prevents
the co-adaptation of feature detectors in the neural network.
Therefore, through this co-adaptation regularization, Gaussian
dropout can indeed avoid co-adaptation and overfitting.

IV. EXPERIMENTS

We investigate the performance of our continuous dropout
on MNIST [21], CIFAR-10 [22], SVHN [23], NORB [24], and
ImageNet ILSVRC-2012 classification task [25]. Samples and
brief description of these data sets are presented in Fig. 1.
We compare continuous dropout with the original dropout
proposed in [1] (Bernoulli dropout), adaptive dropout [9],
and DropConnect [10]. Fast Dropout [8] is an approximation
of Bernoulli dropout that accelerates the sampling process.
Its performance is similar to that of Bernoulli dropout. For
evaluation metric, the classification error, which is defined as
the ratio of misclassified samples to all samples, is applied
(0/1 loss). We use the publicly available THEANO library [26]
to implement the feedforward neural networks that consist of
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Fig. 2. (a) and (b) Testing errors versus epochs of Bernoulli, uniform, and Gaussian dropouts on MNIST. No data augmentation is used in this experiment.
By regularizing the covariance between neurons in the same layer, the capacity of the neural network is improved.

FC layers only, and the networks that consist of convolutional
neural networks (CNNs) are implemented based on Caffe [27].
In all experiments, the dropout rate in Bernoulli dropout and
DropConnect is set as 0.5 because this is the most com-
monly used configuration in dropout and performs the best.
All the other parameters are selected based on performance
on the validation set. To ensure that all three dropout algo-
rithms achieve the same expected output, for uniform dropout,
the variables ui are subject to U(0, 1). In Gaussian dropout,
gi∼N (0.5, σ 2), and σ 2 is selected from {0.2, 0.3, 0.4}.
For adaptive dropout, α is selected from {−1, 0, 1} and
β is selected from {−0.5, 0, 0.5}. To avoid divergence during
propagation, we clip the Gaussian dropout variable to be
in [0, 1], yielding gi = 1 if gi ≥ 1 and gi = 0 if gi ≤ 0.

To verify whether the performance gain is statistically sig-
nificant, we repeated all experiments N times for all methods
and reported the mean error and standard derivation. Here,
N = 30 for data sets MNIST, CIFAR-10, SVHN, and NORB,
and N = 10 for data set ImageNet ILSVRC-2012 because
of the high computational cost in this data set. In each of
the N independent runs, we randomly initialized weights of
the network and then applied different dropout algorithms to
train this network. In other words, in the i th independent
run (i = 1, 2, . . . , N), all dropout algorithms share the same
weights initialization. In another independent run, the network
was randomly initialized again, i.e., the network had different
initialized weights in the i th run and the j th run (i �= j ). In this
way, we obtained N groups of results and then conducted
paired t-test and paired Wilcoxon signed rank test between
Gaussian dropout and all other baseline methods. Their
p-values are reported.

A. Experiments on MNIST
We first verify the effectiveness of our continuous dropout

on MNIST. The MNIST handwritten digit data set consists
of 60 000 training images and 10 000 test images. Each
image is 28 × 28 pixels in size. We randomly separate the
60 000 training images into two parts: 50 000 for training and
10 000 for validation. We replicate the results of dropout in [1]
and use the same settings for uniform dropout and Gaussian

dropout. These settings include a linear momentum schedule,
a constant weight constraint, and an exponentially decaying
learning rate. More details can be found in [1].

We train models with two FC layers using sigmoid or recti-
fied linear unit (ReLU) activation functions (784−800−800−
10). Table I shows the performance when image pixels are
taken as the input and no data augmentation is utilized. From
Table I, we can see that both uniform dropout and Gaussian
dropout outperform Bernoulli dropout, adaptive dropout, and
DropConnect on this data set, irrespective of whether sig-
moid or ReLU is applied. Gaussian dropout achieves slightly
better performance than uniform dropout. To further analyze
the effects of continuous dropout, Fig. 2 shows the testing
errors versus epochs of Bernoulli dropout, uniform dropout,
and Gaussian dropout. We can see that continuous dropout
achieves a considerably lower testing error than Bernoulli
dropout, which demonstrates that continuous dropout has a
better generalization capability.

1) Influence of Variance in Gaussian Dropout:
In Section III, we find that we have an extra degree of freedom
using σ 2 to achieve the balance between network output and
model complexity. To investigate the influence of σ 2 on model
performance in Gaussian Dropout, we train Gaussian Dropout
models with 784 − 800 − 800 − 10 neurons. Dropout masks
are sampled from Gaussian distribution with mean 0.5 and
variance in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.
Activation functions are set to be sigmoid or ReLU. Perfor-
mances of Gaussian Dropout with different standard deviations
are shown in Fig. 3. We can see that the best variance
for Gaussian Dropout is {0.2, 0.3}. For normal distribu-
tions, the values less than two standard deviations from the
mean account for 95.45% of the set. And for three standard
deviations, that is 99.73%. Thus, almost all the values of
N (0.5, 0.2) and N (0.5, 0.3) distribute in [0, 1] (reasonable
distribution for dropout mask variables). Most importantly, our
Gaussian Dropout consistently outperforms Bernoulli Dropout
for all sigma values, which demonstrate that the performance
gain in Gaussian Dropout mainly comes from the distribution
not the extra freedom of sigma.
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TABLE I

PERFORMANCE COMPARISON ON MNIST (MEAN ERROR AND STANDARD DERIVATION). NO DATA AUGMENTATION IS USED. ARCHITECTURE:
784 − 800 − 800 − 10. PAIRED t -TEST AND PAIRED WILCOXON SIGNED RANK TEST ARE CONDUCTED BETWEEN GAUSSIAN

DROPOUT AND ALL OTHER BASELINE METHODS. THEIR p-VALUES ARE REPORTED: p-VALUE-T FOR t -TEST

AND p-VALUE-W FOR WILCOXON SIGNED RANK TEST

TABLE II

PERFORMANCE COMPARISON ON MNIST WITH GAUSSIAN INITIALIZATION (MEAN ERROR AND STANDARD DERIVATION). NO DATA AUGMENTATION
IS USED. PAIRED t -TEST AND PAIRED WILCOXON SIGNED RANK TEST ARE CONDUCTED BETWEEN GAUSSIAN DROPOUT AND ALL OTHER

BASELINE METHODS. THEIR p-VALUES ARE REPORTED: p-VALUE-T FOR t -TEST AND p-VALUE-W FOR WILCOXON SIGNED RANK TEST

Fig. 3. Performance curve of Gaussian Dropout with respect to different
variances. Our Gaussian Dropout consistently outperforms Bernoulli Dropout
for all sigma values. It shows that the performance gain in Gaussian dropout
mainly comes from the distribution not the extra freedom of σ .

2) Covariance of Hidden Units: In Section III, we demon-
strate that continuous dropout can prevent the co-adaptation
of feature detectors. To verify this property, we investigate
the distribution of covariance between units in the same layer.
We construct histograms of the variance of all pairs of units
in the same layer in a trained 784 − 800 − 800 − 10 MNIST
model with ReLU. Fig. 4 shows the log of the number
of pairs (N) whose covariance falls into different intervals.
Histograms are obtained by taking all the 800×800 unit pairs
in each layer and aggregating the results over 10 random input
samples. For each sample, the dropout process is repeated
10 000 times to estimate the covariance. Fig. 4 shows that
in continuous dropout, the distribution is more concentrated
around 0, which indicates that continuous dropout performs

better than Bernoulli dropout in preventing the co-adaptation
of feature detectors. Furthermore, comparing Fig. 4(a) and (b),
we can see that in “no dropout,” the covariance in the second
layer is much more concentrated around 0 than that in the first
layer. After using continuous dropout, the covariance curve
becomes more concentrated than “no dropout” in both layers.
The reason why the effects of continuous dropout become less
significant in a higher layer is that the room for improvement
(reduce covariance) becomes smaller in a higher layer.

To further improve the classification results, we also apply
a more powerful network, which consists of a two-layer CNN
with 32 − 64 feature maps and one fully connected layer with
150 ReLU units. All the dropout algorithms are applied on
the FC layer. We use an initial learning rate of 0.01 and
manually decay the learning rate by a multiplier (0.5 or 0.1)
when the loss function of the validation error reaches a plateau.
The input is also the original image pixels without cropping,
rotation, or scaling. To verify whether the improvement of
continuous dropout is benefited from a favored initializa-
tion, we initialize weights using both Gaussian distribution
(N (0, 0.01)) and uniform distribution proposed in [28]. The
experimental results are summarized in Tables II and III.
We can see that Gaussian dropout consistently performs the
best among all dropout methods, no matter which initialization
distribution is applied. Paired t-test and paired Wilcoxon
signed rank test are conducted between Gaussian dropout and
other methods. Tables II and III show that Gaussian dropout
achieves statistically significant improvement over all baseline
methods and the p-values are less than 0.05.

B. Experiments on CIFAR-10

The CIFAR-10 data set consists of 10 classes of 32 × 32
RGB images with 50 000 for training and 10 000 for testing.
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Fig. 4. Log histogram of covariance between pairs of units from the same layer. (a) Layer 1. (b) Layer 2. It shows that in continuous dropout, the distribution
is more concentrated around 0, which indicates that continuous dropout performs better than Bernoulli dropout in preventing the co-adaptation of feature
detectors (MNIST, 784 − 800 − 800 − 10, ReLU).

TABLE III

PERFORMANCE COMPARISON ON MNIST WITH UNIFORM INITIALIZATION (MEAN ERROR AND STANDARD DERIVATION). NO DATA AUGMENTATION

IS USED. PAIRED t -TEST AND PAIRED WILCOXON SIGNED RANK TEST ARE CONDUCTED BETWEEN GAUSSIAN DROPOUT AND ALL OTHER

BASELINE METHODS. THEIR p-VALUES ARE REPORTED: p-VALUE-T FOR t -TEST AND p-VALUE-W FOR WILCOXON SIGNED RANK TEST

We preprocess the data by global contrast normalization
and zero-phase component analysis whitening as in [29]. To
produce comparable results with the state-of-the-art method,
we apply all the dropout algorithms on the network-in-
network model [30]. This network consists of seven con-
volutional layers and part of them are connected to pool-
ing layers. Two dropout layers are applied to the pool-
ing layers. To compare continuous dropout with adaptive
dropout and DropConnect, we slightly change this model
by omitting the two dropout layers between the CNNs
and replace the last pooling layer by two FC layers with
128 and 10 units, respectively. Dropout is applied to the first
FC layer. During training, we first initialize our model by the
weights trained in [30], and then we fine-tune the model using
different dropout methods. The learning rate is initialized by
0.01 and decayed by 10 every 3000 iterations, without any
data augmentations.

The models are tested after 10 000 iterations, and the
results are presented in Table IV. We can see that Gaussian
dropout achieves the best performance among all dropout
algorithms on this task again. Based on the results of paired
t-test and paired Wilcoxon signed rank test, Gaussian dropout
significantly outperforms all other methods (p-values are less
than 0.05). To further investigate their performance on each
class, confusion matrices are also reported, as shown in Fig. 5.
We can see that Gaussian Dropout achieves the best perfor-
mance on five classes among all six methods. Specifically,
Gaussian Dropout achieves higher classification accuracy on
10, 8, 8, 8, and 7 classes than no dropout, Bernoulli dropout,

TABLE IV

PERFORMANCE COMPARISON ON CIFAR-10 (MEAN ERROR AND

STANDARD DERIVATION). PAIRED t -TEST AND PAIRED

WILCOXON SIGNED RANK TEST ARE CONDUCTED
BETWEEN GAUSSIAN DROPOUT AND ALL OTHER

BASELINE METHODS. THEIR p-VALUES ARE

REPORTED: p-VALUE-T FOR t -TEST AND
p-VALUE-W FOR WILCOXON

SIGNED RANK TEST

Adaptive dropout, DropConnect, and uniform dropout,
respectively.

C. Experiments on SVHN

The SVHN data set includes 604 388 training images (both
training set and extra set) and 26 032 testing images [23].
Like MNIST, the goal is to classify the digit centered in
each 32 × 32 image (0–9). The data set is augmented by:
1) randomly selecting a 28 × 28 region from the original
image; 2) introducing 15% scaling and rotation variations; and
3) randomly flipping images during training. Following [10],
we preprocess the images using local contrast normalization
as in [31].
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Fig. 5. Confusion matrices of all six methods. (a) No dropout. (b) Bernoulli dropout. (c) Adaptive dropout. (d) DropConnect. (e) Uniform dropout.
(f) Gaussian dropout. We can see that Gaussian dropout achieves the best performance on five classes among all six methods. Specifically, Gaussian dropout
achieves higher classification accuracy on 10, 8, 8, 8, and 7 classes than no dropout, Bernoulli dropout, adaptive dropout, DropConnect, and uniform
dropout, respectively.

The model consists of two convolutional layers and two
locally connected layers as described in [33] (layers-conv-
local-11pct.cfg). An FC layer with 512 neurons and ReLU
activations is added between the softmax layer and the final

locally connected layer. We manually decrease the learning
rate if the performance on validation set goes to plateaus [33].
In detail, we multiply the initial learning by 0.5 and then
0.1 repeatedly. Initial learning rate is set to 0.01. The bias
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TABLE V

PERFORMANCE COMPARISON ON SVHN (MEAN ERROR AND
STANDARD DERIVATION). PAIRED t -TEST AND PAIRED

WILCOXON SIGNED RANK TEST ARE CONDUCTED

BETWEEN GAUSSIAN DROPOUT AND ALL OTHER

BASELINE METHODS. THEIR p-VALUES ARE
REPORTED: p-VALUE-T FOR t -TEST AND

p-VALUE-W FOR WILCOXON

SIGNED RANK TEST

learning rate is set to be 2× the learning rate for the weights.
Additionally, weights are initialized with N (0, 0.1) random
values for FC layers and N (0, 0.01) for convolutional layers.
To further improve the performance, we train five independent
networks with random permutations of the training sequence
and different random seeds. We report the classification error
of averaging the output probabilities from the five networks
before making a prediction.

The experimental results on this data set are summarized
in Table V. Comparing the mean classification errors, standard
deviations, and p-values of paired t-test and paired Wilcoxon
signed rank test, we can see that our proposed continu-
ous dropout achieves better performance than no dropout,
Bernoulli dropout, adaptive dropout, and DropConnect. The
performance gain of Gaussian dropout is statistically signif-
icant (all p-values are less than 0.05). Uniform dropout and
Gaussian dropout achieve similar performance on this data set.
Besides, all dropout methods achieve stable performance on
this data set with small standard deviation, except adaptive
dropout that has a large standard deviation (0.235).

D. Experiments on NORB

In this experiment, we evaluate our models on the twofold
NORB (jittered-cluttered) data set [24]. Each image is classi-
fied into one of the six classes, which appears on a random
background. Images are downsampled from 108 × 108 to
48 × 48 as in [34]. We train on twofold of 29 160 images
each and test on a total of 58 320 images. We use the same
architecture as in SVHN. Data set is augmented by 15%
rotation and scaling. No random crop or flip is applied. Models
are trained with an initial learning rate of 0.01. Other training
and testing settings are the same as in SVHN.

The experimental results are given in Table VI. From
Table VI, we can see that Gaussian dropout significantly
outperforms no dropout, adaptive dropout, DropConnect, and
uniform dropout on this data set. Compared with the results on
SVHN data set, all methods have a larger standard deviation
on NORB data set. Experiments on these two data sets adopt
the same network architecture and other experimental settings.
The reason for higher standard deviation on NORB data set
may be that we have much fewer training images on NORB.

TABLE VI

PERFORMANCE COMPARISON ON NORB (MEAN ERROR AND
STANDARD DERIVATION). PAIRED t -TEST AND PAIRED

WILCOXON SIGNED RANK TEST ARE CONDUCTED

BETWEEN GAUSSIAN DROPOUT AND ALL OTHER

BASELINE METHODS. THEIR p-VALUES ARE
REPORTED: p-VALUE-T FOR t -TEST AND

p-VALUE-W FOR WILCOXON

SIGNED RANK TEST

Therefore, the models trained on NORB are not as stable as
that on SVHN.

E. Experiments on ILSVRC-2012

The ILSVRC-2012 data set was used for ILSVRC
2012−2014 challenges. This data set includes images of 1000
classes, and is split into three sets: training (1.3M images),
validation (50K images), and testing (100K images with held-
out class labels). The classification performance is evaluated
using two measures: the top-1 and top-5 error. The former
is a multiclass classification error, and the latter is the main
evaluation criteria used in ILSVRC, and is computed as the
proportion of images such that the ground-truth category is
outside the top-5 predicted categories.

We compare all the dropout algorithms by fine-tuning
on the model with 16 layers proposed by Visual Geometry
Group (VGG) team (configuration D) in [32]. The model
consists of 13 convolution layers and three FC layers. All
the filters used in the convolution layers are configured
with 3 × 3 receptive field, and the numbers of channels
are {64, 64, 128, 128, 256, 256, 256, 512, 512, 512,
512, 512, 512}, respectively. The convolution stride is fixed to
1 pixel; the spatial padding of convolution layer input is 1 pixel
to preserve the spatial resolution of input. The convolutional
layers are followed by three FC layers: the first two have
4096 channels each, and the third contains 1000 channels
to perform 1000 way ILSVRC classification. All hidden
layers are equipped with the rectification (ReLU [4]) and
Bernoulli dropout is imposed on the first two FC layers.
In our experiment, the two FC layers with Bernoulli dropout
are replaced by adaptive dropout FC layers, DropConnect
FC layers, and FC layers with uniform dropout and Gaussian
dropout, respectively.

During training, weights are first initialized by the
VGG_ILSVRC_16_layers model1 in [32], and then fine-tuned
by 100 000 iterations. The input to the ConvNet is fixed-
sized 224 × 224 RGB images, which are zero-centered by
a subtraction of [103.939, 116.779, 123.68] on BGR val-
ues. The batch size was set to 64, momentum to 0.9, and
gradient clip to 35. The fine-tuning was regularized by weight

1http://www.robots.ox.ac.uk/~vgg/research/very_deep/
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TABLE VII

PERFORMANCE COMPARISON ON IMAGENET ILSVRC-2012 (MEAN TOP-5/TOP-1 ERROR AND STANDARD DERIVATION). PAIRED t -TEST AND PAIRED
WILCOXON SIGNED RANK TEST ARE CONDUCTED BETWEEN GAUSSIAN DROPOUT AND ALL OTHER BASELINE METHODS. THEIR p-VALUES

ARE REPORTED: p-VALUE-T FOR t -TEST AND p-VALUE-W FOR WILCOXON SIGNED RANK TEST

TABLE VIII

PERFORMANCE RANK OF DIFFERENT DROPOUT METHODS ON ALL FIVE DATA SETS

decay 5×10−4. For adaptive dropout, alpha is set to 1 and beta
is set to 0. Dropout ratio is 0.5 in DropConnect. In uniform
dropout, mask is sampling from U [0, 1], while the Gaussian
dropout mask is sampled from N (0.5, 0.32). The learning rate
was initially set to 10−4, and then decreased by a factor of
10 after 50 000 iterations. Following [32], the smallest sides
(denoted as S) of the training images are isotropically rescaled
to 256.

During testing, the testing images are isotropically rescaled
to a 256 smallest image side, denoted as Q. Then, the FC layers
are first converted to convolutional layers (the first FC layer to
a 7×7 convolutional layer and the last two FC layers to 1×1
convolutional layers). The resulting fully convolutional net is
then applied to the whole (uncropped) image. The result is a
class score map with the number of channels equal to number
of classes. Then, the class score map is spatially averaged
(sum-pooled). And the test set is also augmented by horizontal
flipping of the images. Finally, the soft-max class posteriors
of the original and flipped images are averaged to obtain final
scores for the image as in [32].

Performances of all the dropout algorithms are shown
in Table VII. Table VII shows that continuous dropout can
improve the performance of conventional dropout algorithms
even for very large scale data set. All the p-values are far
less than 0.05, which indicates that Gaussian dropout achieves
significantly performance gain over other methods on this
data set.

To summarize the overall performance of different dropout
methods, we rank all five dropout methods according to
their performance on each of the five data sets, as shown
in Table VIII. We can see that Gaussian dropout is ranked
first on four data sets and ranked second on one data set.

V. CONCLUSION

In this paper, we have introduced a new explanation for
the dropout algorithm from the perspective of the neural
network properties in the human brain. The activation rate of
neurons in neural networks for different situations is random

and continuous. Inspired by this phenomenon, we extend the
traditional binary dropout to continuous dropout. Thorough
theoretical analyses and extensive experiments demonstrate
that our continuous dropout has the advantage of reducing
the co-adaptation while maintaining variance, and continuous
dropout is equivalent to involving a regularizer that is able to
prevent co-adaptation between feature detectors.

In the future, we plan to further explore continuous dropout
from the following two aspects. First, although we have shown
that continuous dropout penalizes the covariance between
neurons, the corresponding regularization term is not explicitly
defined. We will try to propose a more direct and interpretable
way for the regularization term. Second, dropout is naturally
viewed as a mixture of different models. From this perspective
of view, we plan to derive an error bound for this way
of mixture, leading to a more solid theoretical analysis of
continuous dropout.

REFERENCES

[1] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov. (Jul. 2012). “Improving neural networks by
preventing co-adaptation of feature detectors.” [Online]. Available:
https://arxiv.org/abs/1207.0580

[2] Y. Yuan, L. Mou, and X. Lu, “Scene recognition by manifold regularized
deep learning architecture,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 26, no. 10, pp. 2222–2233, Oct. 2015.

[3] W. Hou, X. Gao, D. Tao, and X. Li, “Blind image quality assessment via
deep learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 6,
pp. 1275–1286, Jun. 2015.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Proc. NIPS, 2012,
pp. 1097–1105.

[5] L. Shao, D. Wu, and X. Li, “Learning deep and wide: A spectral method
for learning deep networks,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 25, no. 12, pp. 2303–2308, Dec. 2014.

[6] D. J. Spiegelhalter and S. L. Lauritzen, “Sequential updating of condi-
tional probabilities on directed graphical structures,” Networks, vol. 20,
no. 5, pp. 579–605, 1990.

[7] L. Szymanski and B. McCane, “Deep networks are effective encoders
of periodicity,” IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 10,
pp. 1816–1827, Oct. 2014.

[8] S. Wang and C. Manning, “Fast dropout training,” in Proc. ICML, 2013,
pp. 118–126.

[9] J. Ba and B. Frey, “Adaptive dropout for training deep neural networks,”
in Proc. NIPS, 2013, pp. 3084–3092.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[10] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus, “Regularization
of neural networks using dropconnect,” in Proc. 30th Int. Conf. Mach.
Learn., 2013, pp. 1058–1066.

[11] S. Wager, S. Wang, and P. S. Liang, “Dropout training as adaptive
regularization,” in Proc. NIPS, 2013, pp. 351–359.

[12] P. Baldi and P. Sadowski, “The dropout learning algorithm,” Artif. Intell.,
vol. 210, pp. 78–122, May 2014.

[13] J. Chorowski and J. M. Zurada, “Learning understandable neural net-
works with nonnegative weight constraints,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 26, no. 1, pp. 62–69, Jan. 2015.

[14] G. Buzsáki and K. Mizuseki, “The log-dynamic brain: How skewed
distributions affect network operations,” Nature Rev. Neurosci., vol. 15,
no. 4, pp. 264–278, 2014.

[15] P. Fatt and B. Katz, “Spontaneous subthreshold activity at motor nerve
endings,” J. Physiol., vol. 117, no. 1, pp. 109–128, 1952.

[16] J. M. Bekkers, G. B. Richerson, and C. F. Stevens, “Origin of variability
in quantal size in cultured hippocampal neurons and hippocampal slices,”
Proc. Nat. Acad. Sci. USA, vol. 87, no. 14, pp. 5359–5362, 1990.

[17] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[18] E. L. Lehmann, Elements of Large-Sample Theory. New York, NY, USA:
Springer, 1999.

[19] A. Livnat, C. Papadimitriou, N. Pippenger, and M. Feldman, “Sex,
mixability, and modularity,” Proc. Nat. Acad. Sci. USA, vol. 107, no. 4,
pp. 1452–1457, 2010.

[20] N. Srivastava, “Improving neural networks with dropout,” M.S. thesis,
Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada, 2013.

[21] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[22] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada,
Tech. Rep., 2009, p. 7, vol. 1.

[23] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proc. ICML, 2010, pp. 807–814.

[24] Y. LeCun, F. J. Huang, and L. Bottou, “Learning methods for generic
object recognition with invariance to pose and lighting,” in Proc. CVPR,
2004, p. 104.

[25] O. Russakovsky et al., “ImageNet large scale visual recognition chal-
lenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, Dec. 2015.

[26] O. Bergstra et al., “Theano: A CPU and GPU math expression compiler,”
in Proc. Python Sci. Comput. Conf., vol. 4. Austin, TX, USA, 2010, p. 3.

[27] Y. Jia et al., “Caffe: Convolutional architecture for fast feature embed-
ding,” in Proc. ACM MM, 2014, pp. 675–678.

[28] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proc. AISTATS, 2010, pp. 249–256.

[29] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and
Y. Bengio. (Feb. 2013). “Maxout networks.” [Online]. Available: https://
arxiv.org/abs/1302.4389

[30] M. Lin, Q. Chen, and S. Yan. (Dec. 2013). “Network in network.”
[Online]. Available: https://arxiv.org/abs/1312.4400

[31] M. Zerler and R. Fergus, “Stochastic pooling for regularization of deep
convolutional neural networks,” in Proc. ICLR, 2013, pp. 1–9.

[32] K. Simonyan and A. Zisserman. (Sep. 2014). “Very deep convolu-
tional networks for large-scale image recognition.” [Online]. Available:
https://arxiv.org/abs/1409.1556

[33] A. Krizhevsky. (2012). Cuda-Convnet. [Online]. Available: http://code.
google.com/p/cuda-convnet/

[34] D. Ciresan, U. Meier, and J. Schmidhuber, “Multi-column deep
neural networks for image classification,” in Proc. CVPR, Jun. 2012,
pp. 3642–3649.

Xu Shen received the B.S. and Ph.D. degrees from
the Department of Electronic Engineering and Infor-
mation Science from, University of Science and
Technology of China, Hefei, China, in 2012 and
2017, respectively.

His current research interests include multimedia,
computer vision, and deep learning.

Xinmei Tian (M’13) received the B.E. and Ph.D.
degrees from the University of Science and Tech-
nology of China (USTC), Hefei, China, in 2005 and
2010, respectively.

She is currently an Associate Professor with the
CAS Key Laboratory of Technology in Geo-Spatial
Information Processing and Application System,
USTC. Her current research interests include mul-
timedia information retrieval and machine learning.

Dr. Tian received the Excellent Doctoral Disser-
tation of the Chinese Academy of Sciences Award

in 2012 and the Nomination of the National Excellent Doctoral Dissertation
Award in 2013.

Tongliang Liu received the B.Eng. degree in elec-
tronic engineering and information science from the
University of Science and Technology of China,
Hefei, China, and the Ph.D. degree from the Univer-
sity of Technology Sydney, Ultimo, NSW, Australia.

He is currently a Lecturer with the School of
Information Technologies, a Faculty Member of
Engineering and Information Technologies, and a
Core Member with the UBTECH Sydney AI Centre,
The University of Sydney, Sydney, NSW, Australia.
He has authored or co-authored over 30 research

papers in journals including IEEE T-PAMI, T-NNLS, T-IP, ICML, and KDD.
His current research interests include statistical learning theory, computer
vision, and optimization.

Fang Xu received the B.S. degree and Ph.D. degree
from the University of Science and Technology of
China (USTC), Hefei, China, in 2009 and 2016,
respectively.

He is currently a Post-Doctoral Fellow with USTC.
His current research interests include cellular neuro-
science and computational neuroscience.

Dacheng Tao (F’15) is currently a Professor of
computer science with the School of Information
Technologies, a Faculty Member of Engineering and
Information Technologies, and the Inaugural Direc-
tor with the UBTECH Sydney Artificial Intelligence
Centre, The University of Sydney, Sydney, NSW,
Australia. He mainly applies statistics and mathe-
matics to Artificial Intelligence and Data Science.
He has authored or co-authored one monograph
and over 500 papers in prestigious journals and
prominent conferences, such as IEEE T-PAMI,

T-NNLS, T-IP, JMLR, IJCV, NIPS, CIKM, ICML, CVPR, ICCV, ECCV,
AISTATS, ICDM, and ACM SIGKDD. His current research interests include
computer vision, data science, image processing, machine learning, and video
surveillance.

Mr. Tao is a fellow of the OSA, IAPR, and SPIE. He was a recipient
of the Best Theory/Algorithm Paper Runner Up Award in IEEE ICDM’07,
the IEEE ICDM 2013 Best Student Paper Award, the 2014 ICDM 10-Year
Highest-Impact Paper Award, the 2015 ACS Gold Disruptor Award, and the
2017 IEEE Signal Processing Society Best Paper Award. He received the 2015
Australian Scopus-Eureka Prize and the 2015 UTS Vice-Chancellor’s Medal
for Exceptional Research.


